三角函数中和差化积公式,它将低一级的运算转化为高一级的运算,利用它解决了化简、求值、解方程,利用对数进行计算等问题。其中公式cosα+cosβ=2cos(α+β)/2 cos(α+β)/2更给人以美的感受,公式两端函数名称完全相同。那么,是否存在着一种特殊的恒等式,将低一级的运算转化为高一级运算,且函数形式完全不变呢?如果存在,这些函数又有什么关系呢?
——《和差化积公式》专题简介
无论乘积项中的三角函数是否同名,化为和差形式时,都应是同名三角函数的和差。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。
积化和差与积差化积是一种孪生兄弟,不可分离,在解题过程中,要切实注意两者的交替使用。如在一般情况下,遇有正、余弦函数的平方,要先考虑降幂公式,然后应用和差化积、积化和差公式交替使用进行化简或计算。和积互化公式其基本功能在于:当和、积互化时,角度要重新组合,因此有可能产生特殊角;结构将变化,因此有可能产生互消项或互约因式,从而利于化简求值。正因为如此“和、积互化”是三角恒等变形的一种基本手段。
积化和差公式的推导用了“解方程组”的思想,和差化积公式的推导用了“换元”思想。只有系数绝对值相同的同名函数的和与差,才能直接运用公式化成积的形式,如果一个正弦与一个余弦的和或差,则要先用诱导公式化成同名函数后再运用公式化积。