高中数学教学计划2

所属专题:高中数学教学计划  来源:    要点:高中数学教学计划  
编辑点评: 转变教学理念,改进教学方法,优化教研模式,积极探索在新课程改革背景下的小学数学教研工作新体系。继续推进“生本教育”改革的进程,提高数学教学质量,努力让本组数学教师成为有思想、有追求、有能力、有经验、有智慧、有作为的新型教师,使教研组的工作更上一个台阶。

(一)教材分析

1.知识结构

首先给出推断符号“ ”,并引出充分条件与必要条件的意义,在此基础上讲述了充要条件的初步知识.

2.重点难点分析

本节的重点与难点是关于充要条件的判断.

(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件 和结论 之间的因果关系.

(2)在判断条件 和结论 之间的因果关系中应该:

①首先分清条件是什么,结论是什么;

②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;

③最后再指出条件是结论的什么条件.

(3)在讨论条件 和条件 的关系时,要注意:

①若 ,但 ,则 是 的充分但不必要条件;

②若 ,但 ,则 是 的必要但不充分条件;

③若 ,且 ,则 是 的充要条件;

④若 ,且 ,则 是 的充要条件;

⑤若,且 ,则 是 的既不充分也不必要条件.

(4)若条件 以集合 的形式出现,结论 以集合 的形式出现,则借助集合知识,有助于充要条件的理解和判断.

①若 ,则 是 的充分条件;

显然,要使元素 ,只需 就够了.类似地还有:

②若 ,则 是 的必要条件;

③若 ,则 是 的充要条件;
④若 ,且 ,则 是 的既不必要也不充分条件.

(5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题 逆否命题,逆命题 否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.

(二)教法建议

1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的 , 与四种命题中的 , 要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若 则 ”形式的复合命题.

2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.

3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.

4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.
 

>>点击查看高中数学教学计划专题,阅读更多相关文章!

    你可能还感兴趣的相关文章

  • 高中数学教学计划3

    在高中数学教学课程中,教学设计是教师为上课而做的准备工作,它是教师钻研教材,了解学生,积累有关资料,设计教学目标,组织教学内容,选择教学方法、制定教学计划等的过程,是教师不断提高自己素质的有效途径,是教师有效上课的重要前提。

  • 高中数学教学计划1
最新2025高中数学教学计划信息由沪江高考资源网提供。

请输入错误的描述和修改建议,建议采纳后可获得50沪元。

错误的描述:

修改的建议: