计算方法
一、方差的概念与计算公式
例1 两人的5次测验成绩如下:
X: 50,100,100,60,50 E(X)=72;
Y: 73, 70, 75,72,70 E(Y)=72。
平均成绩相同,但X 不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是
消除符号影响
方差即偏离平方的均值,记为D(X):
直接计算公式分离散型和连续型,具体为:
这里 是一个数。推导另一种计算公式
得到:“方差等于平方的均值减去均值的平方”。
其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。
编辑本段
性质
二、方差的性质
1.设C为常数,则D(C) = 0(常数无波动);
2.D(CX)=C2 D(X) (常数平方提取);
证:
特别地 D(-X) = D(X), D(-2X ) = 4D(X)(方差无负值)
3.若X 、Y 相互独立,则证:记则
前面两项恰为 D(X)和D(Y),第三项展开后为
当X、Y 相互独立时,
故第三项为零。
特别地
独立前提的逐项求和,可推广到有限项。
方差公式:
平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)
方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n
>>点击查看方差公式专题,阅读更多相关文章!
-
高中数学公式-方差公式
“方差等于平方的均值减去均值的平方”。其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动。一起来学习吧~
- 标准方差公式
- 均方差(标准差)公式
- 协方差公式